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ABSTRACT
This tutorial aims at providing its audience an interdisciplinary
overview about the topics of fairness and non-discrimination, diver-
sity, and transparency of AI systems, tailored to the research fields
of information retrieval and recommender systems. By means of
this tutorial, we would like to equip the mostly technical audience
of SIGIR with the necessary understanding of the ethical implica-
tions of their research and development on the one hand, and of
recent political and legal regulations that address the aforemen-
tioned challenges on the other hand.

CCS CONCEPTS
• Information systems → Recommender systems; Document
filtering; • Applied computing → Law, social and behavioral
sciences.
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COVER SHEET
Duration: 3 hours plus breaks
Tutorial format: on-site event
Intended audience: The interdisciplinary tutorial addresses an
intermediate audience in terms of information retrieval and recom-
mender systems expertise. Since the main audience of SIGIR has a
technical background, we do not assume knowledge in the other
disciplines the tutorial connects to, i.e., policy, ethics, or law.
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EXTENDED ABSTRACT
Motivation
Information retrieval (IR) recommender systems (RSs) affect many
aspects of our daily lives, deciding which content we are exposed
to on the web or social media platforms, which products to buy, or
which music to listen to. With the ever increasing adoption of —
mostly opaque — machine and deep learning technology in such
systems, many ethical questions about their use have emerged. In
particular, questions related to fairness, non-discrimination, diversity,
and transparency have recently been in the focus of the public
debate as well as discussed in many recent research articles, e.g., [5,
9, 10]. Therefore, we address those in the tutorial, and discuss them
from an interdisciplinary point of view.

Fairness and Non-Discrimination. The discussion has been fu-
eled by findings of recent studies that identified harmful biases
in data, algorithmic behavior, and corresponding lists of retrieved
documents and recommended items, e.g., [6, 14, 20, 21, 24, 35, 47].
These biases can result in unfair treatment or even discrimination
against certain users or groups of users, e.g., with respect to their
gender [20], age [38], or personality traits [26]. In some, but not all,
cases such algorithmic behavior is illegal [10, 45].

Diversity. Studies have shown the value of diversity to improve
innovation and excellence in research [42]. In the context of artifi-
cial intelligence (AI), several policy reports and experts [13, 44] have
suggested as well to incorporate diversity in the AI development
process. Diversity refers to the existence of variations of different
characteristics among individuals, such as gender, age, race, religion,
or cultural background, being related to the fairness principle men-
tioned above. AI systems, among which retrieval and recommender
systems play a major role, should then incorporate a diversity of
perspectives in research and development (e.g., through diverse
research communities [12], developing teams or user groups) and
make sure that developed technology provides an equal outcome
for all potential stakeholders. Note that this does not only apply
to the research communities and development teams, but in an
information retrieval and recommender systems context also to
content producers (e.g., diversity of authors of web documents that
are retrieved, or music artists whose songs are recommended).

Transparency. Transparency has been defined as a means for
trust in technologies and involves different concepts such as ex-
plainability, traceability, and communication [13, 40, 41, 46]. Ex-
plainability concerns the ability to explain the technical process
of an AI system (i.e., provide the means for humans to understand
and trace the outputs of the system) and the related human deci-
sions (e.g., application domain or task to be solved), e.g., [30, 43].
These explanations should be adapted to different expertise levels,
from developers to end users of the system. The related concept
of justification refers to the requirement of a retrieval or recom-
mendation system, in our case, to justify why a certain document
or item was presented to the user, e.g., [1, 7]. Traceability allows
keeping track of the behavior of a system in a chronological way,
and facilitates auditability, i.e., the ethical assessment of algorithms
to investigate potentially harmful consequences such as if an algo-
rithm is biased or exhibits discriminatory behavior [3]. For selected
works on auditing algorithms please refer to, e.g., [2, 27, 33, 36].
Finally, the concept of communication incorporates the idea of
documenting the system development process, capabilities, and
limitations [28, 32].

The importance of these topics is further highlighted by many re-
cent guidelines, regulations, and policies such as the ones in the EU
and US, as discussed in [9, 31]. For instance, in the EU context, we
can rely on the EU Charter of Fundamental Rights1 [11], EU Ethical
Principles for Trustworthy AI2 [13], Regulatory Framework for AI,3
and the Digital Service Act4, which all strongly refer to retrieval
and recommendation systems. In the US context, the Platform Ac-
countability and Transparency Act (PATA),5 proposed by several
US senators, requires large platforms to make data available to
support scientific research and oversight connected to data-driven
algorithms.

Since the topics of fairness, non-discrimination, diversity, and
transparency affect the entire population and are influenced by
many stakeholders, e.g., researchers, developers, policy makers,
and economists, they call for an interdisciplinary treatment, involv-
ing the disciplines of artificial intelligence, computer science, ethics,
legal, and political aspects, just to mention a few. Acknowledging
these facts, the tutorial takes an interdisciplinary approach. Nev-
ertheless, we particularly tailor our discussion of these topics to
the SIGIR community. This means we consider information access
systems, more precisely information retrieval and recommender
systems.

Objectives
This tutorial aims at providing its audience an interdisciplinary
overview about the topics of fairness and non-discrimination, diver-
sity, and transparency of AI systems, tailored to the research fields
of information retrieval and recommender systems. By means of
this tutorial, we would like to equip the mostly technical audience

1https://ec.europa.eu/info/aid-development-cooperation-fundamental-rights/your-
rights-eu/eu-charter-fundamental-rights_en
2https://op.europa.eu/en/publication-detail/-/publication/d3988569-0434-11ea-8c1f-
01aa75ed71a1
3https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
4https://digital-strategy.ec.europa.eu/en/policies/digital-services-act-package
5http://www.coons.senate.gov/download/text-pata-117
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of SIGIR with the necessary understanding of the ethical implica-
tions of their research and development on the one hand, and of
recent political and legal regulations that address the aforemen-
tioned challenges on the other hand. As for these political and legal
regulations, the tutorial foremost takes a European perspective,
since EU regulation is at the forefront of elaborating guidelines for
ethical and trustworthy AI (see previous section). Nevertheless, we
also briefly review initiatives outside of Europe, in particular in
the US.

Since the addressed topics are vital and relevant on a global scale,
we strongly believe that the tutorial attracts a global audience, too.
In particular, research in information retrieval and recommender
systems has become a global endeavor in which academic insti-
tutions and industrial companies in different parts of the world
collaborate. Therefore, this tutorial is relevant also to researchers
and practitioners in countries that do not regulate AI technologies
yet, in particular since we are experiencing more and more of such
regulations recently.

Relevance to IR Community
We strongly believe that this tutorial is important to the entire IR
and RS community. Since the major part of the audience has tech-
nical background, raising awareness of the ethical implications of
their work and of the implications of recent regulations on research
and development of IR and RS technologies is of utmost importance.

This tutorial is related to the following tutorials held earlier at
similar venues:

• Bias Issues and Solutions in Recommender System by Jiawei
Chen, Xiang Wang, Fuli Feng, and Xiangnan He at RecSys
20216

• Addressing Bias and Fairness in Search Systems by Ruoyuan
Gao and Chirag Shah at SIGIR 20217

• Towards Fair Federated Learning by Zirui Zhou, Lingyang
Chu, Yong Zhang, Lanjun Wang, Changxin Liu, and Jian Pei
at KDD 20218

• Advances in Bias-aware Recommendation on the Web by Lu-
dovico Boratto and Mirko Marras at WSDM 20219

• Responsible AI in Industry: Practical Challenges and Lessons
Learned by Krishnaram Kenthapadi, Ben Packer, Mehrnoosh
Sameki, and Nashlie Sephus at WWW 202110

• Bias Issues and Solutions in Recommender System by Jiawei
Chen, Xiang Wang, Fuli Feng, and Xiangnan He at WWW
202111

While some of the topics we address in the tutorial at hand, in
particular fairness and transparency, have been discussed in other
tutorials already, our tutorial offers several unique characteristics.
First, unlike others that commonly do not take an interdisciplinary
perspective, we put a strong emphasis on providing such a perspec-
tive from different angles and stakeholders. Second, we connect our
discussion to recent regulatory measures, in particular against the
background of recent EU regulations. Third, since we have not held
6https://recsys.acm.org/recsys21/tutorials/#content-tab-1-5-tab
7https://sigir.org/sigir2021/tutorials
8https://kdd.org/kdd2021/tutorials
9https://www.wsdm-conference.org/2021/tutorials.php#2
10https://www2021.thewebconf.org/program/tutorials
11https://www2021.thewebconf.org/program/tutorials

this tutorial before at other venues, we can contribute novel view-
points and opinions, and different expertise on the subject, which
we tailor to the SIGIR community. Despite the fact that this is a
novel tutorial, we regularly cover the topics of ethics in information
retrieval and recommendation systems in our lectures, interviews,
and invited talks.

Format and Detailed Schedule
The tutorial is held as a 3-hour-tutorial plus additional breaks. The
tutorial is organized into five parts: an introduction; three sub-
sequent parts corresponding to the main themes addressed, i.e.,
fairness and non-discrimination, diversity, and transparency; and
a discussion of open challenges. Throughout the three main parts,
we discuss three perspectives: the system-centric perspective, the
human-centric perspective, and the legal perspective, covering tech-
nical aspects, human needs, and legislators’ points of view, respec-
tively. More precisely, the tutorial covers the following aspects and
is organized accordingly:

(1) Introduction (15 minutes)
Tutorial background, motivation, objectives, relevance to
community, recent political and legal regulations

(2) Fairness and non-discrimination (50 minutes)
(a) Stakeholders: We discuss the various stakeholders of re-
trieval and recommender systems, approaching the ques-
tion for whom the system should be fair.

(b) Definition and quantification of bias and fairness: We in-
troduce the various kinds of bias and fairness concepts and
definitions that are relevant for IR and RS research, along
different axes (e.g., societal vs. statistical biases, model
vs. presentation bias, provider vs. consumer fairness); we
review the most common measures and metrics to quan-
tify bias and fairness; we discuss their relation to political
and legal regulations.

(c) Algorithms to mitigate biases and improve fairness: We
categorize the main strategies to mitigate harmful biases
and improve fairness of retrieval and recommender sys-
tems, e.g., into pre-, in-, and post-processing techniques;
we present concrete methods for each of these categories.

(d) Technical versus ethical and legal perspectives:We discuss
how the regulatory and legal frameworks align with the
operationalization of fairness according to formal defini-
tions often found in IR and RS papers.

(3) Diversity (50 minutes)
(a) Categories of diversity: We introduce and discuss various
kinds of diversity, i.e., personnel diversity in the research
community and development teams, but also diversity in
terms of the creators of content that can be retrieved or
recommended.

(b) Diversity axes:We elaborate on important groups or axes
of diversity, including adults to children (age), frommen to
women to diverse genders, from western to non-western
(culture), minority groups (e.g., indigenous people) and
scientific disciplines.

(c) Diversity in the research community:We present statistics
of diversity aspects in the IR and RS communities, and
ideas how to increase diversity.

https://recsys.acm.org/recsys21/tutorials/#content-tab-1-5-tab
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(d) Integrating diversity in evaluation: We present strategies
for considering diversity in the evaluation of IR and RS
algorithms, in terms of adopted metrics, participants in
user evaluations, and perspectives.

(4) Transparency (50 minutes)
(a) Categories of transparency: We introduce the major as-
pects of transparency, as they relate to building trust in
IR and RS technology; we focus on explainability, trace-
ability, and communication; we review and clarify the
terminology.

(b) Explainability and justification: We discuss major strate-
gies to achieve explainability of IR and RS technology,
i.e., provide means to understand how the system works,
targeting different stakeholders (e.g., developers vs. end
users); we review approaches to provide justifications, i.e.,
mechanisms for the system to justify why a system out-
puts a certain (list of) documents or items.

(c) Traceability and auditability: We discuss strategies to
keep track of the behavior of a system in a chronological
way, in particular with the aim of facilitating auditing.
We also point to recent works that discuss legal ground-
ings and consequences of algorithmic auditing approaches,
which is an underresearched topic to date [27].

(d) Communication and logs: We discuss the importance of
documenting the development process, the resulting mod-
els, system capabilities, intended use, and limitations.

(5) Open Challenges (15 minutes)
(a) Understanding the discrepancy between (1) bias, fair-
ness, and diversity metrics, (2) human perception of these
aspects and factors influencing this perception, and (3)
regulatory frameworks.

(b) Understanding the capabilities and limitations of existing
solutions in terms of fairness, diversity, and transparency.

(c) Taking a multistakeholder perspective when developing
solutions for fairness, diversity, and transparency in IR
and RS technology.

(d) Improving the communication between the different
stakeholders and between relevant research communities,
including computer science, law, ethics, economy, sociol-
ogy, psychology, in order to foster interdisciplinarity.

In order to engage with both physical and virtual SIGIR attendees,
the tutorial includes time slots for audience interaction by means
of surveys and opinion polls, brainstorming periods, and practical
activities (e.g., applying some general concepts and requirements
to specific IR use cases in terms of application domain, task, and
user profile). We take advantage of collaborative tools such as Slido,
Jamboard, or Padlet.

Supporting Material
The tutorial is supported by a GitHub repository containing an
overview of the program with further details about the tutorial. The
GitHub repository also contains the tutorial slides with references
to all relevant works, software, and datasets. It can be accessed
at https://github.com/socialcomplab/Retrieval-RecSys-AI-Ethics-
Regulation-Tutorial-SIGIR22.
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